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Abstract

Under-relaxation in an iterative CFD solver is guided by fuzzy logic to achieve automatic convergence with min-
imum CPU time. The fuzzy rule set uses information from a Fourier transform of a set of characteristic values. The
control algorithm adjusts the relaxation factors for the system variables on each iteration and restarts the solver if
divergence occurs. Two turbulent problems based on a k—¢ model are solved. They include buoyancy driven flow in a
rectangular cavity and mixed convection over a backward facing step. The incompressible Newtonian conservation
equations are solved by the SIMPLER algorithm with simple substitution. In order to achieve the best performance of
the fuzzy controller, the membership functions were tuned by using a gradient method. The fuzzy control algorithm
with the optimal membership functions significantly reduced the CPU time needed for solving the problem, compared
to the highest set of constant relaxation factors which do not cause divergence. For turbulent flow over a backward
facing step, the CPU time was more than five times shorter with the fuzzy controller than with the constant relaxation
factors. For turbulent buoyancy driven flow in a rectangular cavity, the CPU time required for convergence with a fuzzy
controller was reduced by a factor of two, compared to the constant relaxation factors. © 2001 Elsevier Science Ltd.
All rights reserved.

1. Introduction

One of the main challenges of computational fluid
dynamics is having to deal with highly nonlinear differ-
ential equations. In order to solve continuity, momen-
tum, energy and other scalar transport equations, one
has to rely on iterative methods. Some of the most
commonly used methods to solve discretized equations
iteratively are Newton Raphson, Quasi-Newton and
simple substitution. The SIMPLER algorithm, [1],
which is a platform for our study, uses simple substitu-
tion in order to solve discretized governing equations of
fluid motion, energy and scalar transport. However, the
success of this iterative method in most CFD problems
relies on under-relaxation of state variables. The value
of the variable to be used for obtaining the solution in
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the next iteration is the value in the current iteration plus
a fraction of the difference between the current value and
the predicted value.

The under-relaxation method enables and improves
convergence by slowing down the update rate of the
system matrix coefficients. The value of the variable ¢,
to be substituted into the system of discretized governing
equations is obtained as a linear interpolation between
the value from the previous iteration and the one ob-
tained in the current iteration, according to the follow-
ing scheme:

2 AwPu +b ) (1)

</>p=so,i+a<4 ,

ap

where 0 < o < 1 is the relaxation factor, ¢, is the value
of the state variable at node P to be used for the next
iteration, ?, is the value of the state variable at node P in
the previous iteration, ¢,, are the values of the variables
at the surrounding nodes and a,,a,, and b are the con-
stants from the discretized equation.
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In a conventional method, the relaxation factor is
selected manually by the user. It can be prescribed as a
constant during the iterations or it can be altered from
iteration to iteration, node to node or variable to vari-
able. The values of relaxation factors have a strong in-
fluence on convergence of the system of discretized
equations being solved, especially in turbulent flow. Low
values typically insure convergence but result in a large
number of iterations to obtain the solution. High values
of the relaxation factor, on the other hand, tend to lead
to divergence. If a CFD problem can be solved by a
conventional under-relaxation method, there is typically
an optimum value of relaxation factor which produces
the solution in the smallest number of iterations. The
optimum relaxation factor depends on the nature of the
problem, the number of grid points used for discretiza-
tion, grid spacing, iterative procedure used and other
parameters [1]. In general, no method has been found
for determining the optimum relaxation factor analyti-
cally in non-linear problems. The user can either attempt
to guess it based on experience with similar problems or
find it by exploratory computations.

In the current work, the iterative solver of the dis-
cretized governing equations is treated as if it were a
plant to be controlled. Since an analytical model for this
plant does not exist, using a rule based system [2] to
decide on relaxation actors emerges as a suitable ap-
proach. The set of rules uses fuzzy logic [3] as the
method of making decisions. Fuzzy logic was chosen as
a robust technique which enables qualitative judgements
applied to parameters quantitative in nature and highly
problem dependent. Through guided under-relaxation,
the fuzzy logic algorithm controls another algorithm,
which is the CFD solver [4-7]. Algorithms for control-
ling algorithms have been recently introduced as a new
discipline in soft computing [8,9].

The fuzzy rule set is based on the observed relation-
ship between the oscillations in magnitude of the solu-
tion vector during the iterations and the speed of
convergence. The decision making system considers a
large number of characteristic values taken from pre-
vious iterations, which compose the solution history
curve. A standard for fast convergence or “‘set point™ is
a mildly wavy shape of the solution history curve. Any
deviations from this standard are recognized either as
slow convergence or divergent behavior depending on
the value of a generalized error. The deviations are
minimized by implementing a table of fuzzy rules which
utilizes a proportional-integral type of controller.

Two numerical models of turbulent flow and heat
transfer are used for tuning the fuzzy membership
functions applied in the control algorithm. The calcu-
lations of turbulent flow are based on a k— model of
turbulence proposed by Ince and Launder [10], which
involves two additional scalar transport equations,
coupled with the momentum, continuity, and energy

equations. The turbulent flow models are viewed as a
particular challenge for fuzzy control algorithms since
their computational difficulty is increased by the com-
plexity of the governing equations.

In order to optimize the defining parameters of the
fuzzy membership functions, many evaluations of the
final numerical solution need to be done. This process
can take a very long time, especially in the case of
solving turbulent flow and heat transfer. For that
reason, a gradient method was used as an optimization
tool. This method was easy to implement and requires
only the evaluation of the first order partial derivatives,
which saves time compared to the quasi-Newton meth-
ods, for example.

2. Analysis

To examine the potential of fuzzy control algorithms
applied to complex and difficult problems, this study is
focused on turbulent flow. The time-averaged k— model
of the governing equations reported in [10-12] is solved.
An in-house CFD code with the SIMPLER algorithm
was modified in order to simulate low Reynolds number
turbulence. The problems considered here are steady
and incompressible. The Boussinesq assumption of
proportionality between the turbulent sharing stress and
the mean strain tensor holds.

Each of the state variables ¢ (velocity components
and temperature) was relaxed separately. The algorithm
used in this study does not include the relaxation of
pressure. The control algorithm updates the relaxation
factors a? at every iteration based on the information
stored from a finite number of previous iterations. In
this study, the number of previous iterations considered
is N where

N=n if n <50, (2)

N=50 if n>50 (3)

and 7 is the current number of iterations. The algorithm
has two principal parts: one evaluates the nature of the
“solution history curve” and the other controls the
features of this curve during iteration in order to pro-
duce and preserve those features that bring the fastest
convergence. The solution history curve consists of a
characteristic quantity extracted from the solution and
observed over the last N iterations. For each of the state
variables, a separate history curve is considered. The
characteristic quantity that represents the solution at the
nth iteration is the natural norm of the solution, also
known as the magnitude of the solution vector
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where i and j are the node numbers in x- and y-direction,
respectively, ¢, is the nodal value of the state variable ¢
at the iteration n, / is the total number of nodes in the x-
direction and m is the total number of nodes in the y-
direction.

The magnitude of the solution vector S$?(n) at a
particular iteration does not have any significant
meaning if considered isolated from other iterations.
The history of this quantity during code execution gives
information on how stable and fast the convergence is
and whether divergence is likely to occur. Fig. 1 shows
some typical situations which can occur depending on
the numerical difficulty of the problem and the values of
constant relaxation factors used. For a given problem,
low values of relaxation factor typically produce a slow
rate of change of the solution from iteration to itera-
tion. This results in stable but slow convergence, as
shown in Fig. 1(a). For large systems of equations, this
could mean a big expenditure of CPU time. As the
relaxation factor increases, the rate of change of the
solution becomes larger and the system approaches
convergence faster. The solution history curve is
smooth, with a mildly wavy shape due to a few over-
shoots or undershoots, as in Fig. 1(b). After a certain
value of relaxation factor, the rate of change of the
solution vector from iteration to iteration becomes too
fast for the given system of algebraic equations. This
manifests itself as a rough appearance of the history
curve and is followed by delayed, unstable convergence,
as in Fig. 1(c). Further increase in relaxation factor
makes the guess of the solution during iterations almost
random and the system of equations either never con-
verges or diverges.

Spectral analysis was used in order to identify these
observed trends in the solution history and distinguish
them from one another. By saving the magnitude of the
solution vector S? over a finite number of iterations
from n — N to n, a set of data is obtained which can be
treated as a discrete time representation of a signal. At
every iteration, a discrete Fourier transform is per-
formed on this data, according to the following formula:

N-1
Hy =3 sie™, (5)
k=0

where f'is the frequency of the periodic components of
the signal

1 1
< f< —

k is the summation index and i is the imaginary unit. The
solution vector magnitude S? was summed over the last
N saved values. After finding the Fourier transform of
S?, only its peak values and corresponding frequencies
are considered since they identify the main harmonics of
the function S¢ on the given interval.

The Fourier transform can be used to identify how
dominant the harmonics of particular frequencies are in
the solution history curve. Therefore, only the frequen-
cies that have physical meaning are considered:
0<f< % : (7)
The negative frequency domain is dropped, which is also
supported by the fact that the Fourier transform is
symmetric around the ordinate. The lowest value at
f = 0 means that the corresponding harmonic does not
oscillate at all, while the highest value at / = 0.5 means
that the harmonic “‘zig-zags™ on every iteration, which
results in one cycle per two iterations or 25 cycles per
interval, for N = 50. Dominance of the harmonics with
high frequencies means that the convergence is unstable
and the corresponding relaxation factor needs to be
decreased, while their absence implies smooth slow
convergence. The influence of the particular harmonic
with frequency f on the solution history curve is esti-
mated using the absolute value of the amplitude of that
harmonic normalized by the average value of S” on the
considered interval of N points. Based on the properties
of Fourier transform, it can be shown that the amplitude
of the harmonic with frequency f can be expressed as

2 = P 2mikf 2 _ .
A= > sie = v Hr =ap +iby, (8)

k=0

where a; and by are the amplitudes of cosine and sine
function, respectively. The average value of the magni-
tude of the solution vector on the considered interval is
proportional to the Fourier transform that corresponds
to frequency f =0

_ 1 % 1
§0=—3"58=_H,. 9)
N N

According to (8) and (9), the absolute normalized am-
plitude of the harmonic with frequency fis

) R +Im ()
Y Hy ’

4; (10)
where the operators Re and Im denote real and im-
aginary part of the complex number, respectively.

As many observations show, optimal convergence
occurs near the edge of instability which is characterized
by the appearance of low amplitude, high frequency
harmonics. The controller presented in this study is de-
signed to keep the amplitudes of high frequency har-
monics at very small values, while at the same time
allowing and encouraging oscillations with low fre-
quency.

The dimensionless amplitudes of the main harmonics
Aj are multiplied by a weighting function designed to
highlight the harmonics with high frequencies
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Fig. 1. Magnitude of the solution vector versus number of iterations for different relaxation factors. The smaller window represents the
S, vector at the last 50 iterations.

p-f

(1) = exp (22

)

where fin. = 0.5 is the maximum frequency of one cycle
per two iterations. Initially, the value of the constant

(11)

p- = 23 is chosen so that the weighting function satisfies
the condition 1 < W;(f) < 10'. The choice of 10'* as the
maximum value of W;(f) is somewhat arbitrary and
based on exploratory computations. For that reason, the
constant p. was one of the parameters which were op-
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timized in this study. The weighting function takes on
low frequencies and vice versa. As a result, if the Aj- at
f = fmax 18 on the order of magnitude of 107, the
product Wf(fmax)A}(ﬁnax) will be on the order of mag-
nitude of one. At the same time, if A} at £ =10.02 is on
the order of magnitude of one, the product
W;(0.02)45(0.02) will have a magnitude on the order of
unity as well. This mean that if W;(f)4;(f) is to be kept
near unity, the harmonics with high frequencies need to
have low amplitudes and vice versa. Since unstable
solution history curves are characterized by the presence
of harmonics with high amplitudes and frequencies, for
that case the following is satisfied:

Wy (A (f) > 1. (12)

In order to insure fast and stable convergence, the
control algorithm needs to enforce

Wy ()4 (f) <1, (13)

but the weighted amplitudes need to be as close to one as
possible. This is satisfied for

max[W; (/)45 ()] = 1, (14)

where the left-hand side represents the maximum of all
the values of W;(f)4;(f) taken at peaks of the Fourier
transform with frequencies f.

The control problem was formulated so that the set
point is unity, and the error is defined as

e(n) = In(max[WW; (f)4;(f)])- (15)
The error difference is
Ae(n) = e(n) —e(n—1). (16)

The fuzzy rule set was designed with the error and the
error difference as inputs and the relative increment in
relaxation factor Ao”/o? as the output. The rules are
given in Table 1. As an example, one of the rules states
the following: if the error is negative small (NS) and the
error difference is negative medium (NM) the relative
increment in relaxation factor is positive medium (PM).
This means that if the weighted amplitudes of the main
harmonics are lower then one and decreasing, the re-
laxation factor needs to be increased since the rate of
convergence is slowing down. Another rule states: if the
error is positive medium (PM) and the error difference is
positive big (PB), the change in relaxation factor is
negative big (NB). The meaning of this rule is that the
relaxation factor needs to be decreased if any of the
weighted amplitudes of the main harmonics are higher
than one and increasing in size, since this behavior in-
dicates probable instability. The membership functions
are shown in Fig. 2. The initial values of the defining
parameters are p, = 0.001, p, = 0.5 and p. = 23. The

Table 1
Fuzzy rule set*

PB NS NM NM NB NB
PM | PS NS NM NM NB

PS | PM PS NS NM NM
NS | PM PM PS NS NM
NM | PB PM PM PS NS
NB | PB PB PM PM PS

NB NM NS PS PM PB

#The output variable is the increment in relaxation factor, while
the inputs are errors and error differences, as shown. PB=
positive big; PM = positive medium; PS = positive small; NS =
negative small; NM = negative medium; NB = negative big.

output membership functions o f(x)

NB NM

=y

-10p, -10pypy 0 PyPx  Px

input membership functions
W, jm

NB NM NS 1| PS PM PB

Pz Py, 0‘ Pyp; b, x

Fig. 2. Fuzzy membership functions expressed in terms of the
parameters p;, p, and p. for the purpose of tuning.

parameters are selected so that the values of the incre-
ments in relaxation factor are small, compared to those
for errors and error differences. This is because large
increments in o” cause instability for highly nonlinear
problems.

The program starts execution with the default values
of relaxation factor o = 1. The rule set is activated on
every iteration. When the magnitudes of the residual
vectors are increasing, positive increments in relaxation
factors evaluated by fuzzy rules are ignored. If diver-
gence has occurred, which is recognized when the mag-
nitude of the solution vector hits the machine limit, the
code is restarted with relaxation factors reduced by 10%.
After the increment in relaxation factor is defuzzified,
the relaxation factor is updated by

a(n+1) = a(n) + Aa(n). (17)
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3. Benchmark problems

The fuzzy controller was tested on two problems of
turbulent flow and heat transfer: mixed convection over
a backward facing step, and buoyancy driven flow in a
square cavity. The flow is two-dimensional, governed by
the differential equations of fluid motion which utilize a
two-equation model of turbulence proposed by Ince and
Launder [10]. In each case, the convergence criterion was
given by

max o (n) — g(n — 1)|
max [ (n)] (1)

<1077, (18)

where the maximum iterative error in the domain was
normalized by the maximum value in the domain and
the relaxation factor. Using the relaxation factor in the
denominator avoids false convergence, which can occur
for low relaxation factors [1].

4. Turbulent mixed convection over a backward facing
step

Turbulent, mixed convection in a vertical channel
with a backward-facing step was chosen as a benchmark
problem. The geometry of the channel is given in Fig. 3.
Fluid is entering the channel with a uniform velocity
v; =03 m/s. The values of k =5 x 107* m?/s’> and

du _dv _ T _9K _ o

oy ey
yA /
60L
- T=T, |45L
qg=0
AN
A
L
R
T =T, lg T=T,
250L
%HH/H?H v
X
u=20
V= u=20
T =T, v=0 L arthe walls
K =K, K=0
€ =g £=0

Fig. 3. Turbulent mixed convection over a backward facing
step.

& =1.0x107* m?/s* at the inlet were determined by
experiment as reported in [11]. These induce a realistic
level of turbulence in the channel. The inlet temperature
is uniform and equal to the temperature of the isother-
mal left wall 7. The vertical surfaces of the right wall
are kept at a constant temperature Ty, which is 30°C
higher than the temperature of the left wall. The hori-
zontal part of the step is insulated. At the wall, the no-
slip condition is assumed and the values of k£ and ¢ are
prescribed to be zero. At the outlet section at the top of
the channel, fully-developed flow is assumed. Diffusion
flux of the mean velocities, temperature, kinetic energy
of turbulence and dissipation of turbulence kinetic en-
ergy is prescribed to be zero.

The channel is wide, compared to the size of the step.
The small expansion ratio of the channel insures that the
assumption of two-dimensionality of the flow is valid.
The flow is entirely driven by the pressure drop across
the channel and the buoyancy force caused by the
temperature difference between the opposite walls. The
Grashof number based on the height of the channel is
Gr = 3.66 x 10'"'. The Reynolds number based on the
inlet velocity and the width of the channel upstream
from the step is Re = 1.3 x 10*. The fluid is air, with a
Prandtl number of Pr = 0.71.

The total of 68 control volumes was used in the
horizontal direction and 66 volumes were used to model
the flow in the vertical direction. In the fluid region
upstream from the step, 50 x 30 control volumes were
used. For the region downstream from the step, 68 x 36
control volumes were used. The step was modeled as a
rectangular region with viscosity prescribed as
v =10% c¢m?/s. This measure insured that the region
behaves as a solid. The mesh behind the step was densely
spaced in order to capture the recirculating flow cor-
rectly. A high density of control volumes near the walls
was used as well, in order to insure that the velocity and
temperature boundary layers are correctly approxi-
mated.

5. Turbulent buoyancy driven flow in a rectangular cavity

A second benchmark case features turbulent flow in a
tall rectangular cavity with an aspect ratio of 10. The
flow is entirely driven by the buoyancy force, which is
caused by the temperature difference between the verti-
cal isothermal walls. The problem is two-dimensional,
with governing equations given in [10].

The flow geometry and boundary conditions are gi-
ven in Fig. 4. The temperature difference between the
isothermal walls is 25°C. The horizontal walls are adi-
abatic. The no-slip condition is assumed at the solid
surfaces, with the values of £ = 0 and ¢ = 0 prescribed.
The Grashof number based on the height of the channel
is Gr = 2.81 x 10'°,
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at the walls

Fig. 4. Turbulent buoyancy driven flow in a rectangular cavity.

The grid used for modeling the rectangular region is
nonuniform. The number of control volumes used in
both directions in 68. A high density of control volumes
in the wall region was necessary in order to resolve the
boundary layer velocity and temperature profiles. The
grid distribution across the computational half-domain
is given as

L . 2 2.5 l”
x’:i(zllw > for 2<i< 5 +2, (19)
2
w=L"2 for2<j< 40, (20)
My 2

where x; and y; are the node coordinates, i and j and the
counters in the horizontal and vertical direction, re-
spectively, /., is the total number of control volumes in
the x-direction and m,, is the total number of control
volumes in the y-direction.

6. Optimization of fuzzy membership functions

Since many evaluations of the numerical solution
during the optimization of fuzzy membership functions
can require an excessive amount of CPU time, only three
parameters are selected to be optimized. One of the
chosen parameters is the positive domain of definition of

the output membership functions p,, as shown in Fig. 2.
Previous numerical investigations indicated that this
parameter has a large influence on the speed and
stability of convergence. The negative part of the inter-
val is maintained ten times wider then the positive one,
in order to insure a fast drop of the relaxation factor if
the iterations become unstable. The second parameter to
optimize is the relative position of the peak which de-
fines the “positive medium” and “‘negative medium”
membership functions. This peak coincides with the
point where the “positive (or negative) small” mem-
bership function stops and “positive (or negative) big”
membership function begins. The parameter is denoted
as p, in Fig. 2. Its significance comes from the fact that it
determines the centers of areas of all the membership
functions, on a given interval of definition. The third
parameter to optimize is the half-domain of the input
membership functions, denoted as p, in Fig. 2. This
parameter is directly linked to the tolerated frequency
range of the solution vector oscillations during the it-
erative process.

The gradient method is employed in order to find the
set of parameters py,p,, and p., which minimizes the
number of iterations needed for the solution to con-
verge. In order to avoid divergence or minimize the
number of oscillations needed for convergence, the de-
fining parameters for the membership functions need to
varied in such a way that they stay within an order of
magnitude of their original values. In addition, there is a
large difference between the orders of magnitude of p,, p,
and p.. A reasonable range of p, is 10,000 times wider
then the corresponding interval of p.. This causes the
formation of a long, narrow ‘““valley” in the objective
function distribution around the optimal point. In order
to avoid slow convergence associated with this
phenomenon, the parameters are normalized by their
initial values. At the beginning of the optimization, the
normalized parameters have values p: =p:=p:=1.
All the gradient evaluations and updates of the param-
eters are performed in the normalized space. Before the
fuzzy membership functions are updated, the normal-
ized parameters are converted back to p,,p, and p..

The optimization algorithm starts by obtaining the
necessary gradient information. This information is
stored in a ““cell” which consists of four points in the 3-
D space of parameters, as shown in Fig. 5. Point 1
represents the initial set of normalized parameters p;, p;
and p!. This set is accompanied by the number of iter-
ations needed for the solution to converge, with the
fuzzy membership functions defined by that particular
set:

ni:F(vap}wpz)' (21)

Point 2 is obtained by perturbing the parameter p; by
5% of its value and finding the new number of iterations
needed for convergence. Similarly, points 3 and 4 are
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Fig. 5. Approximate estimation of gradient during the opti-
mization. Function F represents the number of iterations nee-
ded for a solution to converge, with a given set of parameters p,,
by and p:-

obtained by the equivalent perturbations of the param-
eters p, and p., respectively. Each time the perturbations
were made, the code was run in order to obtain the
number of iterations for convergence. The approximate
partial derivatives in three perpendicular directions are
estimated as

22
Ap; Ap: ’ @)
AF _ F(pi,p; +Ap),pi) = Flpy, p),p2) (23)
Ap; Ap; '
AF  F(p;,p,.p: +Apl) — F(p;,py,p2) (24)

Ap; Ap;

The ratios given by Eqgs. (22)—-(24) form a gradient vector
G, which points into the direction of the steepest in-
crease in the value of the objective function F.

The next task of the optimization algorithm is to
change the parameters p}, p’ and p; along the direction
opposite from the gradient G, until the minimum of the
objective function is found. The direction of steepest
descent is only local to the current point and varies in
the parametric space. For this reason, the vector of
parameters needs to be changed in small increments and
the gradient needs to be recalculated as frequently as
possible. The advancement of the parameters in the di-
rection of steepest descent of the function F is given by
the following expressions:

AF
Ap; k7

P;(Hl) = P;(k) =4 (25)

. R , AF
Pyor)y =Puy — A | o (26)
) ) Apy .
* * 1 AF
Prk+1y = Py — AAp* ) (27)
z |k

where k is the number of the current step in the opti-
mization process. The parameter 4 determines the size of
the increment in the vector of parameters {p;,p},p;}
along the direction opposite from the gradient G. At the
beginning of the optimization process, the value of 7 is
estimated as

e
V() () (&)

This limits the initial increment in the vector of
parameters to 10% of its magnitude. If the gradient is
decreasing during further steps, the value of 1 is kept
constant and the change in vector {p},p;,p;} becomes
smaller, as it approaches the minimum. If the gradient is
increasing, the 1 needs to be recalculated by the appli-
cation of the Eq. (28). This insures that the change in the
vector of parameters stays small.

Every new set of values of p}, p’ and p; is followed by
finding the solution of the CFD problem for which the
fuzzy membership functions are being optimized. This
makes the optimization process very time-consuming. In
order to reduce the number of runs of SIMPLER, the
gradient vector is updated in a cycle manner, one di-
rection at a time.Whenever a new guess in the values of
Px, Py and p. is made by the application of Egs. (25)—(27),
a different parameter is perturbed and the corresponding
component of the gradient vector is updated. The opti-
mization continues until the set of parameters p;, p;, and
p; starts changing insignificantly and the magnitude of
the gradient vector gets close to zero. This indicates that
a local minimum of the objective function F has been
found.

(28)

7. Results and discussion

The solutions obtained by using SIMPLER with the
control algorithm were verified by comparison with the
results published in [11,12]. The details of verification
are available in [7]. All the solutions satisfy the conver-
gence criterion given by Eq. (18). In the case of turbulent
flow over a backward facing step, a grid independent
solution was obtained by using 68 control volumes in the
horizontal and 66 control volumes in the vertical direc-
tion. The convergence of the solution was strongly de-
pendent on the grid density near the walls, grid density
in the recirculating flow region immediately behind the
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step, and the variation of grid density in the computa-
tional domain. A similar influence of the mesh density
distribution on convergence was noticed for turbulent
buoyancy driven flow in a rectangular cavity. For this
numerical model, a grid-independent solution was ob-
tained by using 68 control volumes in each direction.
A comparison between the performance of the fuzzy
controller and the case using constant relaxation factors
was done for the initial set of parameters which define
fuzzy membership functions: p, = 0.001,p, = 0.5 and
p- =23. The application of the fuzzy controller in
solving turbulent flow over a backward facing step re-
sulted in convergence after 8168 iterations. The iterative
process was initialized with the values of the relaxation
factors for u,v,7,K and ¢ equal to unity. During the
iterations, the relaxation factors were altered by the
fuzzy control algorithm, as shown in Fig. 6. If the set of
relaxation factors was too high, the solution diverged
after only a few iterations and the code needed to be
restarted. At every restart, the relaxation factors were
reduced by 10% until their values dropped low enough
so that restarting was no longer needed. Between re-
starts, the relaxation factors are also modified by the
fuzzy control algorithm. The last restart of the solver
marks the end of this initial, unstable zone, as shown in
Fig. 6. In the case of turbulent flow over a backward
facing step, the total number of restarts was 38 and the
last one occurred after 179 iterations. The values of the
relaxation factors immediately after the last restart were

o = 0.0211, (29)
o' = 0.0218, (30)
1.0
unstable stable
zone - zone

a® 05 4

0.0 T
1000 10,000

Fig. 6. Relaxation factors applied on state variables versus
number of iterations for turbulent flow over a backward facing
step.

" =0.0165, (31)
oK =0.0211, (32)
o =0.021. (33)

During the stable portion of the iterative process, the
relaxation factors were continuously increased by the
fuzzy rules. For turbulent flow over a backward facing
step, the final values of the relaxation factors were one
order of magnitude larger then those obtained after the
last restart of the solver.

In order to demonstrate how the fuzzy control of the
relaxation factors influenced the speed of convergence,
the same problem was solved by using constant relax-
ation factors, with the values given by Egs. (29)-(33).
These are considered to be the largest constant values of
the relaxation factor, which don’t cause the solver to
diverge. The number of iterations needed to obtain the
solution was 42,707, which is more then five times larger
than in the case when the fuzzy controller was used. The
total saving in CPU time obtained by the fuzzy control
algorithm was 7 h 52 min and 39 s. All the computations
were performed on a cluster of IBM RS/6000 work-
stations with a 580 MHz processor.

To illustrate the convergence properties of the itera-
tive procedure with the fuzzy controller and with con-
stant relaxation factors, the behavior of the iterative
errors during the computation is shown in Fig. 7. The
natural norm of the vector of iterative errors on the
computational domain was divided by the natural norm
of the corresponding variable and used as an indicator
of the speed of convergence. Comparison between Figs.
7(a) and (b) reveals a similarity between the curves ob-
tained by the controller and those obtained by the
constant relaxation factors. In both cases, there is the
presence of an initial transient interval, characterized by
oscillatory behavior of the iterative errors. The length of
this interval is about 2000 iterations, regardless of
whether the fuzzy controller or the constant relaxation
factors were used. It is followed by a smooth, monotonic
decrease of the iterative errors, until the limit which
marks convergence was reached. The speed of drop of
the iterative errors was more then 5 times faster with the
fuzzy controller than with the constant relaxation fac-
tors. This implies that the gradual increase of relaxation
factors by the fuzzy controller during the iterations
significantly reduced the overall computational effort
required to solve this problem.

In the case of the turbulent buoyancy driven flow in a
rectangular cavity, the solution obtained by the fuzzy
control algorithm converged after 7099 iterations. Dur-
ing the unstable period of the iterative process, the sol-
ver had to be restarted 13 times. The last restart
occurred after 43 iterations. After the last restart, the
relaxation factors had been reduced to
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Fig. 7. Normalized iterative errors versus number of iterations for turbulent flow over backward facing step. The results given in (a)
were obtained by the fuzzy control algorithm, while (b) represents the errors obtained by constant relaxation factors.

o =0.277, (34)
o' =0.279, (35)
ol =0.271, (36)
oK =0.288, (37)
o = 0.288. (38)

The relaxation factors were further increased by the
fuzzy sets of rules, until convergence was achieved.
The performance of the fuzzy logic controller was
compared to the iterative procedure obtained with the
constant relaxation factors, given by Eqs. (34)—(38). The
constant relaxation factors produced convergence after
16,153 iterations, which is more then two times larger

7100 -
buoyancy driven flow
in a rectangular cavity
7000 4
n; 6900 -
~d
6800 A
6700 T T T
0 5 10 15 20
(a) step number

compared to the number of iterations needed for con-
vergence with the fuzzy controller. The total CPU time
saved by using the fuzzy rule set in this case was 1 h 56
min and 27 s.

During the tuning procedure, new sets of values of
Px,py and p. are successively produced by the gradient
method, until the minimum number of iterations needed
for convergence is reached. Fig. 8 shows the number of
iterations needed for the solution to converge versus the
step number of the optimization process. The two
“bumps” in Fig. 8(a) indicate overshoot of the optimum
point. The gradient method converged in 17 steps, which
took more than 10 hours of CPU time. The large ex-
penditure in CPU time can be explained by the large
number of iterations needed for convergence at every
step. In the case of mixed convection over a backward
facing step, a slightly smaller number of steps were

8200

mixed convection over

a backward facing step
8000

7800 -
n, 7600 1

7400

7200

7000

(b)

step number

Fig. 8. Tuning of the fuzzy membership functions for two numerical models of turbulent flow and heat transfer. The total number of
iterations needed for convergence for every set of fuzzy membership functions is shown versus step number.
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Table 2
Defining parameters for optimal membership functions evalu-
ated on numerical models of turbulent flow and heat transfer®

Numerical model Optimal membership functions

D« Dy P-
0.00195 0.4121 21.272

Buoyancy driven flow

in a rectangular cavity
Mixed convection over
a backward facing step

0.001653 0.6856 20.3509

#The initial values of p,, p,, and p, are 0.001, 0.5 and 23, re-
spectively.

needed for optimization, as shown in Fig. 8(b). The
optimization went smoothly without any overshoots of
the extremum point. However, the execution time was
longer than in the case shown in Fig. 8(a). This is due to
the considerably larger number of iterations needed for
this numerical model to converge.

The defining parameters for the optimal membership
functions in the case of the turbulent flow models are
shown in Table 2. The positive interval of definition of
the output membership functions, p,, increased for both
models but stayed within the same order of magnitude
as the initial value of 0.001. This indicates that the guess
for p, made by trial and error and some experience with
laminar models was done correctly. The peak of the
membership functions “positive medium” and “nega-
tive medium” was significantly altered from its original
value of 0.5, as shown in Table 2. The values of this
parameter changed by the order of 0.1 in the positive
and negative direction. The lower values of p, indicate a
shifting of the centers of area of the membership
functions towards the origin. This produces slower
variations in relaxation factor due to the action of the
fuzzy controller. Similarly, the higher values of p, pro-
duce faster changes in relaxation factor during itera-
tions.

For the two turbulent models presented in Table 2,
the half-domain of the input membership functions, p,,
reduced very slightly from its original value. By com-
paring the values of p, and p, listed in the table for the
two numerical models, it is interesting to note that a
higher value of p, is followed by a higher value p, and
vice versa. The parameter p. is closely related to the

Table 3

desired amplitude of iterative oscillations of the solu-
tion vector magnitude, through the formula given by
Eq. (11). If the output membership functions allow
large positive increments in relaxation factors, then the
restriction on the sizes of amplitudes 4} needs to be
more severe in order to prevent divergence. This means
that the alarming amplitude of the iterative oscillations
will be lower in this case, for any particular non-zero
frequency. High rates of increase in relaxation factors
need to be accomplished by low accompanied by low
amplitude iterative oscillations and vice versa, in order
to achieve fast convergence. No apparent relationship
can be found between p, and p, or p, and p., from the
data available so far and with the methodology used in
this study.

The performance of the triangular membership
functions before and after tuning is shown in Table 3.
The tuning of the defining parameters reduced the
number of iterations needed for convergence by 340 in
the case of buoyancy driven flow in a rectangular cav-
ity. This was only a 5% improvement in the speed of
convergence, which means that the original set of fuzzy
membership functions was nearly optimal for this
problem. However, tuning of the membership functions
applied in mixed convection over a backward facing
step reduced the number of iterations needed for solu-
tion by more then 1000, which is nearly a 20% im-
provement.

It would not be practical to tune the rule set for every
new problem encountered. The gain in execution time
would be far outweighed by the time needed to perform
the optimization. Instead the goal of the exploratory
work described here is to demonstrate: (1) that a single
fuzzy rule set (the non-optimized set) can be used on two
very different problems in turbulent flow and (2) that it is
possible to produce a better rule set on an individual
problem by using optimization techniques. The hope is
that once a fairly large number of individual cases are
optimized, clear guidelines for a single effective rule set
will emerge. The authors have previously shown [6] that
a single rule set was able to solve five very different cases
of laminar flow and heat transfer. There is good po-
tential for the development of a single rule set that is
able to solve a board range of problems in turbulent
flow.

Number of iterations needed for convergence for two sets of triangular membership functions*

Numerical model Characteristic Control volumes Number of iteration
numbers used Optimal Before tuning
Buoyancy driven flow in a rectangular cavity Gr=2.8 x 10" 68 x 68 6758 7098
Mixed convection over a backward facing step Gr = 3.66 x 10" 68 x 68 7009 8189
Re =13 x10*

#The numerical models feature turbulent flow and heat transfer.
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8. Summary

A control algorithm which selects relaxation factors
at every iteration according to criteria that insures fast
and stable convergence was developed. The algorithm
uses spectral analysis and fuzzy logic in order to evaluate
and control convergence during iteration.

In order to examine the potential of fuzzy control
algorithms applied in difficult problems, the time aver-
aged k—¢ model was used for solving natural convection
in a rectangular cavity and mixed convection over an
adiabatic backward facing step. The total saving in CPU
time using the fuzzy controller for the rectangular cavity
problem was two hours and the savings for the back-
ward facing step was eight hours.

The triangular membership functions were tuned by
singling out three significant defining parameters and
optimizing them for each numerical model separately.
The optimization improved the CPU time needed for
convergence by 5% in the case of turbulent buoyancy
driven flow in a rectangular cavity and 20% in the case
of turbulent mixed convection over the backward facing
step. The implication of the study is that shape and
configuration of the fuzzy membership functions can
have an important influence on the efficiency of the
controller.

The savings in CPU time are not the only important
effects of using a fuzzy controller. There is perhaps a
very significant saving in engineering time, since the user
will no longer be required to manually search for a set of
relaxation factors that avoid divergence. In addition, the
idea of using fuzzy logic to control a non-linear simu-
lation does not rely on any particular features of the
SIMPLER algorithm. It is reasonable to suppose that a
rule set could be found for many other algorithms as
well. It was not particularly difficult to find a set of
membership functions and rules that produced good
results and the solution for the problems described here
was not very sensitive to the parameters used in the
fuzzy logic. Thus fuzzy controllers have high potential
for useful application in numerical simulation.

References

[1] S.V. Patankar, Numerical Heat Transfer and Fluid Flow,
Series in Computational Process and Thermal Sciences,
Hemisphere, Washington, DC, 1980.

[2] A.A. Hopgood, Knowledge Based Systems for Engineers
and Scientists, Electronic Engineering Systems Series, CRC
Press, Boca Raton, 1993.

[3] L. Zadeh, Fuzzy sets, Information and Control 8 (1965)
338-353.

[4] J. Ryoo, D.A. Kaminski, Z. Dragojlovi, Automatic con-
vergence in a computational fluid dynamics algorithm
using fuzzy logic, in: The Sixth Annual Conference of the
Computational Fluid Dynamics Society of Canada, Que-
bec, VIII, 1998, pp. 1-6.

[5] J. Ryoo, Control of under-relaxation in computational
fluid dynamics using fuzzy logic, Master of Science Thesis,
Rensselaer Polytechnic Institute, Troy, NY, 1998.

[6] Z. Dragojlovic, D.A. Kaminski, J. Ryoo, Control of
convergence of a computational fluid dynamics algorithm
using fuzzy logic, ASME IMECE, Anaheim Brea, CA,
1998.

[7] Z. Dragojlovic, Control of convergence in a computational
fluid dynamics algorithm using fuzzy logic, Ph.D. Thesis,
Rensselaer Polytechnic Institute, NY, 2000.

[8] P. Arabshahi, J.J. Choi, R.J. Marks, T.P. Caudelll, Fuzzy
control of back propagation, in: First IEEE International
Conference on Fuzzy Systems, San Diego, CA, 1992. pp.
967-972.

[9] M.A. Lee, H. Tagaki, Dynamic control of genetic al-
gorithm using fuzzy logic techniques, in: Proceedings of the
Fifth International Conference on Genetic Algorithms,
1993, pp. 76-83.

[10] N.Z. Ince, B.E. Launder, On the computation of buoyancy
driven turbulent flows in rectangular enclosures, Int.
J. Heat Fluid Flow 10 (1989) 110-117.

[11] J.Z. Zhao, A. Li, T.S. Chen, B.F. Armaly, Turbulent mixed
convection flow over a vertical backward-facing step, in:
AIAA/ASME Joint Thermophysics and Heat Transfer
Conference, 2, ASME, 1998. pp. 185-191.

[12] P.W. Giel, F.W. Schmidt, A comparison of turbulence
modeling predictions to experimental measurements for
high Rayleigh number natural convection in enclosures, in:
Proceedings of the Ninth International Heat Transfer
Conference, 1, Jerusalem, Israel, 1990, pp. 175-180.



